31
2009
10

Electrical Standoff Insulators

Electrical Standoff Insulators

Although standoff insulators perform an ancillary function within most electrical systems, they can be critical for maintaining a device’s operational capability. A standoff insulator typically supports a conductor at a distance from the surface, or substrate, to which it is attached. ThBulk molding compound,Bulk molding composite,BMC,sheet molding compound, SMCe insulator’s high electrical resistance prevents the unintentional flow of current between a conductor and surrounding objects, effectively reducing the potential for power damage and energy waste.

Standoffs are used as separators in electronic and mechanical industries. They can be produced from a variety of materials, and come in a range of dimensional categories. For an insulator, the standoff format is particularly useful, as it eliminates any direct physical contact between electrical components that may cause them to short out. To better understand if standoff insulators are necessary for a given project, it may be helpful to review electrical operations as well as the different types of insulators currently available.

 

Conduction vs. Insulation

Conductors function under the principle that a charge will move through any material in which electrons can be excited. Perpetuating the charge builds energy and creates an electrical flow through a conductive substance. An insulator is any substance lacking the physical properties to excite electrons and extend the charge—this is usually due to the “band gap,” which constitutes the difference between a material’s valence (the strength of its atomic bonds) and its conductivity (the degree to which it can carry a current).

Insulators typically have strongly bonded
valence electrons, preventing them from entering an excited state. However, if sufficient voltage is applied, the electrons will overcome their bonds and become charged, causing the insulator to become a conductor. This is usually accompanied by some form of material damage that alters the former insulator’s physical properties.

Insulating Materials

The material used to create an insulator can greatly influence its effectiveness in certain applications. Manufacturers typically produce porcelain insulators from clay, quartz, or feldspar rock. They can tolerate high voltage or electrical stress, and reliably regulate the flow of charge. In addition, porcelain has high tensile strength, corrosion resistance, and deformation resistance.

However, ceramics are susceptible to fracture due to their rigidity.
Composite materials are common alternatives to ceramic-based insulators, as they alleviate the potential for cracking. A composite, such as a fiberglass core sheathed in rubber, can provide greater physical flexibility and moisture resistance, but with lower voltage tolerance and a faster rate of wear than its ceramic counterpart.

Plastic insulators are usually made from polymer resins, such as polypropylene or polyethylene. They are highly versatile and tend to be less expensive than ceramic or composite materials. Prolonged exposure to ultraviolet light can, however, increase their frailty and chance of shattering.

Standoff Insulator Applications

A standoff insulator is mounted at a distance from the electrical component it supports, and functions essentially as a threaded spacer. The most important specifications for a standoff insulator are its electricity clearance, mechanical strength, and mounting procedure. They are most commonly used for regulating current in conductors, or in conductive components of switchgear and transformers (though the units are typically designated by insulating medium rather than arrangement).

Due to the physical separation between the insulator and the component, standoffs usually control the flow of a high level of voltage, and significantly reduce the chances of inter-component shortages. This is especially useful in powering stations or electrical devices that have high energy requirements and electrically-sensitive equipment.

In deciding whether a standoff is right for a particular application, the insulating material, conductive strength, and environmental conditions are important factors. However, the proximity and electrical resistance of the device to be supported is likely the central concern in selecting an insulator.

 
 

...

26
2009
10

Hot runner systems on the mould

Hot runner systems on the mould

...

22
2009
10

模具设计要点

一、设计依据
尺寸精度与其相关尺寸的正确性。
根据塑胶制品的整个产品上的具体要和功能来确定其外面质量和具体尺寸属于哪一种:
外观质量要求较高,尺寸精度要求较低的塑胶制品,如玩具;
功能性塑胶制品,尺寸要求严格;
外观与尺寸都要求很严的塑胶制品,如照相机。
脱模斜度是否合理。
脱模斜度直接关系到塑胶制品的脱模和质量,即关系到注射过程中,注射是否能顺利进行:
脱模斜度有足够;
斜度要与塑胶制品在成型的分模或分模面相适应;是否会影响外观和壁厚尺寸的精度;
...

22
2009
10

美国的模具制造

 

中国模具业目前的高速发展,使得越来越多的相关企业将模具制造转移到中国。也使得我们经常能够遇到出口模的订单,如何按不同客户的要求完成,是我们必须面对的问题。比如美国的模具制造一直都在使用英制单位,而且还有其它很多与我们炯然不同的标准,因此在这类模具的设计之前,一定要沟通好相关的要求,否则会产生非常多的麻烦,甚至导致模具报废。这里转贴一份美资公司的相关要求,以供参考: 

MOLD ENGINEERING STANDARDS

1.0 GENERAL OVERVIEW
...

22
2009
10

mould term

 top view   ----俯視圖
front view   ----前視圖
side view   ----側視圖
plane view ----平面圖
contour  ------外型銑削
pocket  ------挖槽
flow line   ----罩一曲面
...

12
2009
10

主要缺陷中英文对照

 

主要缺陷中英文对照

序号     中文            英文              序号      中文        英文
...

12
2009
10

plastic injection mold 模具技术用语

 模具技术用语
1. XXX!你现在有空吗,我可以问你一些问题吗?

Could I ask you some questions if you are free?/ Are you free now? May I ask you some questions (aquestion)?

2. 请问此产品的面是否为外观面?表面做什么处理?是晒纹/抛光?

Can you tell me whether the surface of this part is a visible/esthetic one? What will we do for its

...
12
2009
10

vertical type three plate multi-cavity injection mold

...

   
01
2009
10

入水:gate

一、入水:gate
  进入位: gate location
  水口形式:gate type
  大水口:edge gate
  细水口: pin-point gate
  水口大小:gate size
  转水口: switching runner/gate
  唧嘴口径: sprue diameter
  二、流道: runner
...

01
2009
10

Sheet Moulding Compound / Bulk Moulding Compound

SMC/BMC moulding
Sheet Moulding Compound / Bulk Moulding Compound